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Aggregation 2f Fuzzy frefarences; variations .on A Theme 

by 

s. Subramanian 

1. INTRODUCTION 

Barrett, Pattanaik and Salles (1986) have considered the 
classical Arrow (1963) problem of aggregation of individual 
preferences, in a context wherein both personal and public. 

. ' 

preferences are taken to be vague. The results of these exercises 
have been, on the whole, discouraging, with the impossibilities in 
the exact framework more or less carrying over to their fuzzy 
counterparts. In the works just cited, an important component of 
the methodology employed has been the treatment of the fuzzy 
binary relation of strict preference as a primitive. Dutta (1987) 

has undertaken the task of starting out with the fuzzy relation of 
'weak' preference and . then deriyinq, through axiomatic 
rationalization, the asymmetric and symmetric parts of this 
relation. He then proceeds, within this framework of fuzzy 
individual and social preferences, to review Arrow-type. theorems 
of aggregation. He discovers that his results are more 
encouraging than the Barret-Pattanaik-Salles conclusions. 

In the present paper I too start out with a fuz.zy weak 
preference relation and, with a slightly differently specified 
axiom system to that employed by Dutta, derive the corresponding 
strict preference and indifference relations. Within this 
framework of fuzzy preferences, the 'relation-functional' versions 
of some Arrow-type aggregation problems ar re-examined. As we 
shall see, the results of these exercises are, at best, 'mixed'; 
and, at worst, essentially negative. 
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2. THE ASYMMETRIC AND SYMMETRIC COMPONENTS OF THE WEAK FUZZY 
PREFERENCE RELATION: ALTERNATIVE CONSTRUCTIONS 

. . 
x = {x,y,z, ••• } is the finite set of all conceivable alternatives, 
with X containing at least three elements. 

N = {1, ••• ,i, ••• ,n} is the finite set of individuals constituting 
society, with N containing at least two members. 

A fuzzy weak binary preference relation . (FWBPR) is a function 
R:xxx .... co,11, while an exagt weak binary preference relation 
(EWBPR) is a function R:XxX..,.{O, l}. An FWBPR R on X is (a) 

reflexive iff v xex: R (x,x)•l; (b) connected iff for all distinct 
x,y,EX: R (x,y)+R(y,x)�l; and (c) maXJDin (or!-> transitive iff for 
all distinct x,y,z ex: R (x,z)� min (R(x,y),R (y,z)]. A fuzzy weak 
binary preference ordering (FWBPO) is an FWBPR which is reflexive, 
connected and M-transitive. 

Dutta (1987) bas shown that extracting the strict preference 
(P) and indifference (I) relations from an FWBPR R on X is an 
unfruitful exercise when R,P and I are governed by the rules which 
hold for them in the exact framework. The following result is due 
to him: 

Theorem�. Let R be a connected FWBPR on X satisfying 

(i) R = PvI, viz. vx,y,ex: R (x,y)==max[P (x,y),I (x,y)]; 

(ii) I is symmetric, viz. vx,yeX: I (x,y)=I (y,x); 
(iii) P is (strongly) asymmetric, viz. vx,yex: P (x,y) > o � 

P (y,x)•O; and 
(iv) PnI = a, viz. Yx,yeX: min [P (x,y),I (x,y)]=O. 

Then, either R .is an EWBPR , or, vx,yex: R (x,y)=R (y,x) = 
I (x,y)=I(y,x). 
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Proof. Dutta (1987; Proposition 2.4). (Q.E.D) 

Clearly, in order to find some meaningful way out of Theorem 
.. 

1, one or more of axioms (i) - (iv) listed in the statement of the 
theorem must be relaxed. Dutta him�elf regards axiom (iv) as a 

natural candidate for relaxation, and states and proves the 
following result: 

Theorem a. Let R be a connected FWBPR satisfying 
(i) R = PvI; 
(ii) I is symmetric; 
(iii) P is (strongly) asymmetric; and 
(iv') Vx,yeX :  R(x,y) = R(y,x) � P(x,y) = P(y,x). 
Then, vx,yeX :  P(x,y) = R(x,y) if R(x,y) > R(y,x); 

. = o, otherwise; and 
I(x,y) = min [R(x,y), R(y,x)J. 

Proof. Dutta (1987; Proposition 2.5). (Q.E.D.). 

\ 

t ... 
( 

1) . 

In what follows, I pursue an alternative route to weakening 
the axiom system . (i) - (iv). In particular, it is easy to see 
that axiom (iii) is just about the strongest version of asymmetry 
one can invoke - requiring, as it does, that no two alternatives 
cari be strictly preferred to each other with a positive degree of 
confidence. Barrett, Pattanaik and Salles (1986) employ a weaker 
condition of asymmetry in terms of which if any alternative x is 
preferred to any other alternat'ive y with complete confidence, 
then y may not be preferred to x with any positive degree of 
confidence: vx,yeX: P(x,y)=l � P(y,x)•O. Under this formulation, 
given a pair of alternatives x,y, one can have : P(x,y) = P(y,x) = . 
• 99; if now the extent to which x is strictly preferred to y were · 

to rise by a marginal degree from .99 to i.o, then asymmetry would 
demand that P(y,x) must decline abruptly from .99 to zero. This 
sort of discontinuously precipitous decline in P(y,x) for a 

... 
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marginal increase in P(x,y) is not a very appealing property of 

the asymmetric relation. Just about the weakest asymmetry 

cqndition one can invoke, and which escapes the difficulty just 

discussed, is one in which any pair of distinct alternatives can 
be preferred to each other with a positive degree of confidence, 
provided only that each alternative is not preferred to the other 
with complete confidence: vx,yeX:P(x,y) = 1 � P(y,x) < 1. If we 

relax only axiom (iii) in the axiom system (i) - (iv) , along the 
lines just discussed, we obtain the following result: 

Theorem�. Let R be a connected FWBPR satisfying 

(i) R = PvI; 
(ii) I is symmetric; 
(iii') P is (weakly) asymmetric, viz. vx, yeX: P (x, y) • 1 � 

P(y,x) < 1; and 

(iv) PnI = a. 

. 
Then, either 2(A) or 2(B) below is true: 

Vx,yEX: P(x,y) -o 'I(x,y)•R(x,y) if R(x,y)•R(y,x)•l; 
and 
P(x,y) • R(xt'y)· , I (x,y)•O, otherwise. 

vx,yex: P(x,y) -=O, I(x,y)=R(x,y) if R(lt,y)•R(y,x); 
and 
P(x,y) • R(x,y) , I(x,y)•O, otherwise. 

) 2(a) 

' J · 2 (b) 

Proof Suppose, . first, that R(x,y) • R(y,x) • 1 but P(x,y) .a o. 

Then, by (i11), I(x,y)•O; . by (ii), I(y,x)•O; and by (i), 

R(x,y)=P(x,y) and R(y,x)-=P(y,x). We,: :therefore · have P(x,y) • 

P(y,x) = 1 which however vio�ates (iii'). Therefore, if R(x,y) = 

R(y,x) = 1, then P(x,y) = P(y,x) • o and, by virtue of (i), I(x,y) 

= R(x,y), as required. suppose, next, that -[R(x,y) � R(y,x) = 1]. 
. . 

We distinguish two cases: (a) R(x,y) • R(y,x); and (b) R(x,y) • 
R(y,x) < 1. Suppose (a) is true but P(x,y) .a R(x,y). Then, ·by 

4 ·, 
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(i) and (iv) , R (x, y) = I (x, y) >;O; by (ii) , I (x, y) = I (y, x) ;  and 
by (i) and (iv) again, R (y, x) = I(y,x). so we have R.(x, y) = 
R (y, x) which contradicts (a) . Suppose (b) is true. We have to 
show that either P (x, y) = R (x, y) (and therefore, by (iv) , 
I (x, y) aO) or P (x, y) :.=O (and theref_ore, by (i), I (x, y) =R (x, y) ) .  . . 

Suppose, to .the contrary, that both (bl) [P (x, y) :atR (x, y) ] and (b2) 
[P (x, y) 1tO]. But notice that if (bl) is true then by (i), 

R (x, y) =I (x, y) and by (iv) , P (x, y) =O, viz. (b2) is false; 
conversely, if (b2) is true, then by (iv) , I (x, y) =O and by (i) , 
R (x, y) =P (x, y) , viz. (bl) is false: therefore, under either of (bl) 
or (b2), R cannot simultaneously satisfy (i) and (iv) . This 
completes the proof of-the Theorem. (Q. E. D. ) .  

In what follows we shall, in the context of preference 
aggregation problems, explore the relative 'success' records of 
formulations (1) , (2A) and (2B) of the asymmetric and symmetric 
parts of the weak preference rela�ion. 

3. FUZZY AGGREGATION RULES 

Let T be the set of all FWBPRs on x. In this paper we shall 
be specifically concerned with three distinguished subsets of T: 
H

0
, H1 and H2, of which H

0 
is the set of all FWBPOs R on X such 

that the asymmetric and symmetric components of R are as defined 
in (1) ; and H1 (respectively, H2) is the set of all FWBPOs R on X 
such that the asymmetric and symmetric parts of R are as defined . . . . 

in 2A (respectively, 2 (B) ) .  

A -

. 
A 

A fuzzy aggregation rule (F�) is a function f:Tn � T 
(T, T (:ate) s; T) such that, for every n.-tuple of individual FWBPRs 
(Ri) in its domain, f specifies a unique social FWBPR R in its 
range. 

. · -·- · · · - -- -· · - -
-
- - ·- ----·- - - · ·· ---

· -
-

· ·
- · · ------··---- ' 
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Elements of Tn, which are preference profiles, will be designated 
(Ri)ieN' (R'i> ieN' etc; and we shall also write R for f(<Ri>ieN> ' 
R'for f(<R'i>iEN)' etc. 

Some restrictions one may wish to. impose on an FAR are defined 
below (these are fairly standard conditions in the social choice 
literature and will therefore not be elaborately explained). 

An FAR f:Tn .. T .aatJ .. sfies 

,. , 
(a) neutrality (condition N) iff V(Ri)ieN' (R'i)i•N E Tn ·and for 
all distinct x,y,w,zeX: 

[Ri(x,y)=R'i(z,w) ViEN & Ri(y,x)=R'1(w,z) ViEN] implies 
[R(x,y)=R'(z,w) & R(y,x)•R'(w,z)]; 

(b) Independence Slt. Irreleyant Alternatives (condition I) iff 
A 

V(Ri)ieN' (R'i)iEN • Tn and for all distinct x,yeX: 

[Ri (x,y)=R' i (x,Y,) ViEN & Ri (y,x)=R' i (y,x) VieN] implies 

(R(x,y)=R'(x,y) & R(y,x)zR'(y,x)]; 

An (c) anonymity (Condition A) iff V(R1) ieN' (R' i) ieN e T and for 
all distinct x,yeX: 

-

R'�(i)(y,x) VieNJ implies (R(x,y)•R i (x,y) & R(y,x)aR'(y,x)] where 

� is the set of all one-to-one correspondences from N to itself; 
. . 

(d) non-dictatorship (Condition D) ift there does not exist jeN 
such that V(Ri)ieN E? and for all distinct x,yex: 

.. 

---
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(e) non-oliaarcbv (Condition O) iff there does not exist a 
coalition C such that V(Ri)iEN e 

Tn and for all distinct x,y EX: 
(i) Pc(x,y) > Pc<Y,X) � P(x,y) > P(y,x); and (ii) [3jEC: Pj(x,y) > 
Pj(y,x)] � P(y,x) = 0,-_ 

where a coalition is any nonempty subset of N and, for all C(:aee),N 

and a;ll di�tinct x,yeX, [Pc(x,y) > Pc(y,x)] is employed as a 
shorthand for [Pi(x,y)· > Pi(y,x) VieC]; and 

(f) 

all 
the Pareto criterion (condition P) iff V(R1)iEN 
distinct x,ye�: P(x,y) 2: min Pi(x,y). 

i•N · . 

eTn and for 

It should be noted that an FAR: which satisfies rteutrality also· 

satisfies independence of irrelevant alternatives, while an FAR 

which satisfies anon�ity also satisfies non-dictatorship. A 

couple of additional definitions of relevance are provided below. 
Almost Decis:iyeness. A coalition c (rasp., · individual j) is 

almost decisive for any x against any y iff 

[Pc(x,y)>Pc(Y,X) & PN-C(y,x)>PN-c<x,y)J implies [P(x,y)>P(y,x)] 

{resp., [Pj(x,y)>Pj(y,x) & PN-{j}(y,x)>PN-{j}(x,y)] implies 

[P(x,y)>P(y,x)]}. 

Decisiveness. A coalition c (resp., individual j) is decisive for 
any x against any y iff 

[Pc(x,y)>Pc(Y,x)] implies [P(x,y)->P(y,x) J 

{resp., [Pj(x,y)>Pj(y,x)J implies, [P(x,y)>P(y,x)]. 

· · · -- . . .. .. - ---- - · - - -- -·­ - - -- --· . . ·- · ·---
-"" · ---- . -

7 

tf. . ... . . .  . . . . · · · · ----·· ·· - . . . . - · ·  . . . · -



Given the preceding inventory of concepts and definitions, we can 

proceed to a consideration of some substantive results in 

preference aggregation.· 

4. SOME 'ARROW-TYPE' THEOREMS 
Dutta (1987; Proposition 3.9) has proved that there exists an 

FAR .f:Hn
0

-+ H
0 

satisfying the Arrow co�ditions I, D and P. However, 
an FAR f:Hn

0
-+ H

0 
falls foul of the Gibbardian 'oligarchy' result: 

Dutta· (1987: Remark 3.11) asserts that there exists no F� f:Hn
0

-+ 

H
0 

satisfying conditions I,O and P. 

Turning ne�t to weak fuzzy preference relations whose 
asymmetric and symmetric components are as defined in (2A) , we 
begin with a strong existence result: 

Theorem ,i.• There exists an FAR f:Hn 
1

-+ H
1 

satisfying conditions 
N, A and P. 

A 

Proof. construct the following FAR f: 

Vx,yEX, V(Ri)ieN e Hn
1 : R(x,y)=l if x=y; 

•[l+mini•N R1(x,y)]/2 otherwise. 

A A . . Note first that by construction of f,� is reflexive. Moreover, by 
A 

. 
A 

construction of f, for all distinct x,yEX:R(x,y) 2: 1/2, which 
A A 

ensures the R is connected. To see that R is M-transitive, 
consider the following. Let {x,y,z}' X be any triple of distinct 
alt1srnatives, and let minieN R1(x,z)=Rit(x·,z) for some kEN. Then, 
since the. R1 are M-transitive, one must have: 

(4.1) Ric(x,z) � min CRic(x,y), Ric(y,z)J. 

Suppose (a) Ric(x,y) a Rit(y,z). Then, by virtue of (4.1), 

Rk (x, z) a Ric (y, z) ea miniEN Ri (y, z)]. Further, Rit (x, z) a ¾ (y, z) 
implies that Ric(x,z) � min [miniEN R1(x,y), miniEN R1(y,z)): this 

. ..,..,.,, i � ! . . 
: j. 
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is true irrespective of whether miniEN Ri(x,y) it: Rk(y,z) or miniEN 
Ri(x,y) < Ric(y,z). If (a) is not true, it must be the case that 
(b) ¾CY,Z) > Rk(x,y) so that, in view of (4.1), Rk(x,z) � Rk(x,y) 
(it: miniEN R1 (x,y)]. Further, Ric(x,z) . a: Rit(x,y) implies that 
¾Cx,z) a: min [minie:N ·R1(x,y), 11,'iniEN

. 
R1(y,z)]: this is true 

irrespective of whether miniEN R1(y,z) � Rit(x,y) or minieN Ri(y,z) 
< Rk(x,z). We have thus proved that for every triple of distinct 
alternatives {x,y,z}: 

miniEN R1 (x, z) it: min · [miniEN R1 (x, y) , minieN R1 (y, z) ] , whence 
[1 + miniEN Ri(X,Z)]/2 it: min ({1 + miniEN Ri(x,y)}/�, il + miniEN 
R1(y,z)}/2] or, equivalently, by construction of f, R(x,y) it: min 

J 
, •  

A A 

[R(x,y), R (y,z)J, as required �y M-transitivity. To see that 
alternatives 

A 

f satisfies PC, note that for a�y pair of distinct 
A A 

�,yEX, if minieNPi(x,y) > o, thel'), by construction of f, �(x,y) = 
R(x,y) = (1 + miniEN a1cx,y)]/2 it: mi�i•N R1(x,y) = �iniEN P1(x,y). 

The proof of the theorem is completed by noting that f obviously 
satisfies both neutrality and anonymity. (Q.E.D.). ' . 

Theorem 4 .is · a strong possibility result, and implies that 
the Arrow paradox can be circumvented in the fuzzy framework of 
aggregation under review: this follows from recalling that 
Condition N implies condition I and Condition A implies condition 
o. • 

The next result shows that an aggregation r�le �rom Hn
1 to H1 

can get around the Gibbardian 'oligarchy' problem as well: 

Theorem�: There exists an FAR f: en
1 � H1 satisfying conditions 

I,O and P. 
Proof. consider again the FAR 

' "'  
f constructed in the proof of 
A. A 

Theorem 4. We already . kno� that f satisfies I and PC, and that R 

_ ,,  __ . " . .. ·-- .. ·- ·- - ·- . . .  _ ·- · -·-·- -· . - " • .  - - -- -· - --·----- -- ; 
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is reflexive, connected and transitive, so it only remains to 
prove that f is non-oligarchic. suppose, instead, that f .ia 
oligarchic. It must be the case that if an oligarchy c exists, 

A 

then# C>l since we know f (from Theorem 4) to be non-dictatorial. 
n Now consider (Ri) ieN E H 

1
, · x,yEX and j ,keC such that R

j (x,y) = 

Rk (y, x) = 1 and Rj (y, x) = I\: (x, y) = o. Then, since c h�s been 

presumed to be an oligarchy, j and k must be vetoers, viz. P(x,y)• 
A A A A 

P(y,z) = o; however, by construction of f, P(x,y) = R(x,y) = 

[l + minieN R1(x,y))/2_ = [l + Rk(x,y)]/2 s: i' and we have a 
contradiction. Therefore, our supposition regarding the existence 

, 

of an oligarchy is false, and the theorem is proved. (Q.E.D.). 

While Theorems 4 and 5 are distinctly encouraging, it is 
disappointing to note that precisely the converse is true when we 
employ Construction (2B) of the asymmetric and symmetric parts of 

. : . 
the weak fuzzy preference relation; and this despite the fact that 
(2B) shares with (2A) the common parentage of the system 
((i),(ii),(iii') and (iv)]. This is the content of the 
result (the proof of which, by virtue. of its · length, 
relegated to an Appendix at the end of this· paper) . 

of axioms 
following 
has been 

Theorem§. There exists no FAR f:Hn
2 � �2 satisfying Conditions 

I, D and P. 

Proof. Appendix. (Q.E.D. ). 

5. CONCLUDING OBSERVATIONS 
Is there 

Constructions 
any I!. priori 

(1), (2A) and (2B) 

• 

criterion for choosing among 

. of.the symmetric and asymmetric 
parts of the weak preference relation? one possible 

consideration that may have some weight is to require that 
constructions in the fuzzy framework should mimic the properties 
of their counterparts in the exact framework as closely as 

--·-­' 
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possible - so that vague constructions are seen to be, as nearly 
as possible, genuine generalizations of the canonical settings. 
In the context of the relationship between �he weak and the strict 
preference relations R and P, the following two properties - which 
one may call Properties I and II respectively - hold in the exact 
framework. 

Property X• Vx,yeX: R (x,y)aR (y,x)�P (x,y)=P (y,x)�o. 

Property II, vx,yEX: P(x,y)-P(y,x)=R(x,y)-R(y,x). 
Now it is immediately clear that Constructions (1) and (2B) 
satisfy Property I, which (2A) does not. Again, Constructions 
(2A) and (28) satisfy Property II, while (1) does not - as is 
revealed in Figure 1 which plots the graph of P(x,y) - P(y,x) as a 
function of R(x,y) - R(y,x) (in the diagram, the value·of R(y,x) 
has been fixed at some « e(0,1)).· 

If, therefore, Constructions (1) and (2A) are disqualified, 
we are left with (2B) , which is the only one of the three 

constr�ctiona that satisfies both Properties I and II. However, 
Construction, (2B) ;is the par·fect · recipe for 'aggregational 
impossibility'! There appears, therefore, to be no easy fuzzy way 
out of the exact nihilism of Arrow's theorem. 

11 

• 

,,, __ ·---··-·-. ,: 
�--·-------·-- . . .  . . .. - ·· - · · - ... - ·· . . . •... 



. .  . . ·' .. 

APPENDIX· 

Proof 2f ·Thaoram · i . , , 

Theorem .l· 
:and P. 

Thef_e exists no FAR f:Hn

2-.e2 satisfying conditions I, D 

we shall prove the theorem exactly along the lines employed 
by Sen (1970) in proving the Arrowian General Possibility Theorem 
in the exact framework. But first, three lemmata to this and. 

Lemma i. Let R be a r•flexive and connected FWBPR.on x. ·If R is· 
M�transitive, then R is M'-transitive, where M'-transitivity 
requires that for any triple of distinct alternatives {x, y, z} , X: 
[R(x, y) > R(y, x).:: & R(y,z) > R(z, y)J implies (R(x, z) > R(z, x)]. 

Proof suppose· the · 1emma to be false. Then, there exists a 

triple {x, y, z} � x·such that R is M-transitive over the triple but 
not M'-transitive, viz. R(x,y) > R(y,x) & R(y,z) > R(z,y), and 
R (z , x) 2= ·R (x, z)·. 

Since R satisfies M-tranaitivity, 

(Ll . 1) 

(Ll. 2) 

(Ll.3) 

(Ll.4) 

R(x, z) 2= min[R(x, y), R(y,z)J. 
Assume WLOG that 

min[R(x, y), R(y,z)JmR(y, z). 
Then, (Ll. 1) and (Ll. 2) yield 

R(x,z) � R(y, z), 
whence, since R(y,z) > R(z,y) by data, 

R(x, z) > R(z, y). 

By M-transitivity over {z, x, y}, R(z,y) .t min[R(z, x) , R(x, y) J 
which, in view of (Ll. 4) and the hypothesis that R(z, x) 2= R(x,z) 
implies that 

12 
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(Ll.5) R (z, y) � R (x, y) . 

By M-transitivity over {y, z, x}, R (y, x) � min [R (y, z) , R (z ,x) ] 
which, in view of (Ll. 3) and the hypothesis that R (z, x) � R (x, z) ,  .• 

leads to 

(Ll. 6) R (y, x) � R(y, z) .  

From (Ll.5) and (Ll.6), and recalling· that R (y, z) .. > R(z,y) by 

data, 
. data. 

one has: R(y,x) > R(x,y) - which, however, contradicts the 
This completes the proof of the lemma. (Q. E.D. ) • 

Before stating the next result, a notational clarification: 
Notation. Suppose 3jeN such that j is almost decisive 
(respectively, decisive) over some ordered pain of distinct 

2 alternatives (x, y) e X • Then, we shall denote this by the 
notation Dj (x, y) [respectively, ! Dj (x, y) ]. 

Lemma A• Let f: Hn

2 � H2 be an , FAR satisfying conditions P and I. 
(x, y) e x2

·, then it If there exists jeN such 
is true that Dj (u, v) 
alternatives (u, v) ex2

• 

that Dj (x, y) for some 
for all ordered pairs of distinct 

E:;i;:siof. Suppose Dj (x,y) for some (x,y)eX
2 • r Let z be any other 

alternative. It will first be shown that j is decisive over every 
pair of alternatives in the set {x, y, z} x {x, y, z}, viz. that j is 
decisive over the ordered pairs (x, y) , (y, x) , (y, z) , (z, y) , (x, z) 
and (z, x) .  To this end, consider the following. (In what follows, 
it is readily verifiable �hat every profile invoked is indeed a 
member of the domain Hn 

2 of the FAR f. Moreover, use will be 
recurrently made of Lemma 1 which assures us that, since every R 
in the range H2 of f is M-transitive, it is also M'-transitive) . 
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Suppose, first, that Rj(x,y)=l,Rj(y,x)=O,Rj(Y,Z)=l,Rj(z,y)=O, 
Rj(x,z)=l,Rj(z,x)=O, �-{j} (x,y}=O, �-{j} (y,x)=l, �-{j}(y,z)=l 
and �-{j} (z,y)=O. Then, since Dj (x,y), P(x,y) > P(y,x), viz. 
R(X,,Y) > 

. 
R(y,x); and by PC, P(y,z)•l > P(z,y), viz. R(y,z)•l > 

R(z,y). Since R is M-transitive, it is also-by Lemma 1 -
M'-transitive. Hence, (R(x,y) > R(y,x) & R(y,z) > R(z,y)] implies 
that R(x,z) > R(z,x), viz. P(x,z) > P(z,x) which - by Condition I 
and the fact that only j's preference over the pair (x,z) has been 
specified - must entail that j is decisive over the ordered pair 
(x,z). We thus have: 

(L2 .1) 

Suppose, next, that Rj(x,y)•l, Rj(y,x)•O, Rj(z,x}•l, 
Rj (x,z)•O, Rj (z,y)•l, Rj (y,z)•O, �-{j} (x,y)•O, · �-{j} (y,x)=l, 
8N-{j} (x,z)=O, and �-{j} (z,x)s:1, Then Dj (x,y) implies R(x,y) > 

R(y,x); PC requires that R(z .,x) > R(x,z); and M'-transitivity of R 

over the triple {
z,x,y} implies that R(z,y) > R(y,z), viz. P(z,y) 

> P(y,z). Condition I assures as that 

Next, suppose that Rj(x,y)•O, Rj(y,x)�l, Rj(y,z)=O, 
Rj(z,y)=l, Rj(x,z )=O, Rj(z,x)=l, R,,-{j}(x,y)=O, �-{j}(y,x)al, 
�-{j} (y,z)=l, and �-{j} (z,y)=O. Then, 6j (z,y) (already proved 
yide {L2.2)) implies R(z,y) > R(y, z); PC requires R(y,x)=l > 

R(x,y); and M'-transitivity over {
z,y,x}.requires R(z,x) > R(x,z); 

given that P(z,x) > P(x,z) when only the preference of j over 
(x,z) has been specified, Condition I implies that 

(L2.3) 
• 

Now consider the following preferences: Rj(x,y)•O, Rj(y,x)=l, 
Rj(y,z)=l, Rj(z,y)=O, Rj(x,z)=l, Rj(z,x)=O, �-{j}(x,y)=O, 

_,, ____ -·-··" ----- - - --11 . '
I

; . . . 
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�-{j} (y ,x) =1, �-{j} (x, z) =O, and �-{j} (z, x) =1. Since Dj (x, z) 
(See L2.1), R(x,z) > R( z,x); by PC, R(y,x)=l > R(x,y); and by 
M'-transitivity over the triple · {y,x,z }, p·(y,z) > P(z,y) which, 
thanks to I, assure us that 

(L2.4) 

Let the preferences of individual j now be given by: 
Rj(x,y)=O, Rj(y,x)=l, Rj(y,z)=l, Rj(z,y)=O, Rj(x,z)=O, and 
Rj(z,x)=l. As we have already seen - from (L2.4) and (L2.3) -
Dj(y,z) and Dj(z,x); so we must have: R(y,z) > R(z,y) and R(z,x) > 

R(x,z) · whence_, by M'-transitivity over ·{y,z,x}, P(y, x) > P(x,y) 
which, by virtue of Condition I, leads to 

(L2.5) 

suppose j's preferences are· now. given by: Rj(x,y)=l, 
Rj(y,x)=O, Rj(y,z)=O, Rj(a,y)=l, Rj(x,z)=l, and Rj(z,x)=O. Since, 
as already proved - see (�2.1) and (L2.2) - i5j (x,z) and i5j (z,y) , 

we must have: R(x,.z) > R(z,x) and R(z,y) > R(y,z) - leading, 
through M'-transitivity over the triple {z,x,y} to P(x,y) .> P(y,x) 
and therefore, in view of I, to the conclusion that 

Now let u and v be any two distinct alternatives in x. We 
consider the following three mutually exclusive and completely 
exhaustive cases: case Ci): # [{x,y} n {u,v}J s2 with, say, x=u 
and y=v; case tii): # [{x,y} n {u,v}]=l with, say, x=u; and case 

(iii): # [{x,y} n {u,v}] =O. Under case (i), clearly Dj(x,y) 
implies i5j(u,v) and Dj(v,u) (vide (L2.5) and (L2.6)). Under case 
(ii), consider the triple {x,y,v}; again, Dj(x,y) 
implies Dj(u,v) and Dj(v,u) (yide (L2.1)) and (L2.3)). Finally, 

- -- · - - - · ·- · · · · --- ·  - ---- ·-·-- ------ --
-. 
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consider Case (iii) . First take the triple {x, y, u}. . Dj (x, y) · 
implies Dj (x, u) (yide (L2 .1)) (and therefore Dj (x, u) ) .  Now take 
the triple {x,u,v}. Since Dj(x,u) - as just proved - it must be 
the case (vide (L2.4) and (L2.2) ) that Dj(u,v) and Dj(v,u) . We have 
thus proved, as require�, . �hat if there is an individual· ·j who is 
almost decisive for some x against some y in X, then j is decisive 
over every ordered pair of alternatives (u,v) , viz. that j is a 
dictator. (Q.E.D.) 

Lemma�. Let f: Hn

2�a; be an FAR satisfying conditions P and I.  
Then, there exist j EN and x,yeX such that Dj(x,y) . 

Proof. We shall assume the lemma to be false and derive a 
contradiction. Note first that, by virtue of PC, there exists an 

almost decisive coalition, namely the coalition N. Let c be a 

smallest almost decisive coalition. Let c
1 

and c
2 

be two.�utually 
exclusive and completely exhaustive nonempty subsets of c, with 
c1={j} for some jeN. Let. c3 :=N-c. Now consider the following 
permissible configuration of preferences over a triple of distinct 
alternatives {x,y,z} � X (in what follows, « is a number.in the 
interval (0,1) ) .  

PC (X,y)=l, 
1 

Pc (z,x)=«; 
1 

Pc (x,y) =l, 
2 

Pc (z,x) =l; 
2 

and 
PC (X, y)=«, 

3 

Pc (z,x) =«. 
3 

Pc (y,x) =a, 
, 2  

Pc (y,x) =l, 
3 

·- ·
11 

Pc (y,z) =l, 
1 

Pc (z,y) =a, .. Pc (x, z) =l, 
1 1 

Pc (y,z) =a, Pc (z,y) •l, 
2 

· 
2 

16 

Pc· C z , Y > ==« , 
3 

• 

Pc (x,z) =a, 
'2 
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Since c is an almost decisive coalition and PC ( x, y) > PC (Y, x) 

while PN-C(x,y) > PN-c<Y,X) , w� must have: 

(LJ.1) R(x,y) > R(y,x) . 

Suppose R(z,y) > R(y,z) . Then, by Condition I, c
2 

must be an 

almost decisive coalition which - since c
2 

is a strict subset of c 

- contradicts the fact that C is a smallest almost decisive 

coalition. Therefore, -[P(z,y) > P(y,z) ], viz. either 

(LJ.2) P(y,z) > P(z,�) (i.e., R(y,z) > R(z,y) ) ; 
or 

(LJ.3) P(y,z) =P(z,y) =O (recall that under constuction (2B) of the 
.. 

asymmetric and symmetric components of R, for all distinct x,yeX: 

P(x,y) =P(y,x) �P(x,y) =P(y,x) =O) . 

Suppose (LJ.2) is true. Then, from (L2.1) and (L2.2) together 

with M'-transitivity of R over the triple {x,y,z}, one has P(x,z) 

> P(z,x) which - in view of Condition I - would support the 

conclusion that c1 is · almost decisive for x against z, in 

contradiction of C (which is a strict superset of c1) being a 

smallest almost decisive coalition. Therefore, (LJ.2) must be 

false, and we are left with (L3.3) . By PC over the pair (y,z) , we 

must have: 

(LJ.4) P(y,z) � minieN Pi(y,z) • a >  o. 

(LJ.3) and (LJ.4) are mutually contradictory Thus, assuming the 

lemma to be false leads to contradiction, and we conclude that the 

lemma is true. (Q.E.D.) . 
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Remark ll• It may be noted that Lemmata 2 and 3 correspond, 
respectively, to what Sen (1986) calls the 'Field Expansion Lemma' 
and the 'Group Contraction Lemma'. 

Proof 2f Theorem .§.. By Lemma 3, there exist . j EN and x, YEN such 
that Dj (x, y). By Lemma 2, j is a dictator. This completes the 
proof of the Theorem- (Q. E. D. ) • 
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Figure 1 

The graph of P(x,y) - P(y,x) under Construction ( 1) as a 

function of R(x,y) - R(y,x) [drawn f�r R(y,x) = a, 
Where a e(0,1 )] 
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