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Abstract

Meritocratic systems are commonly understood as those that assign tasks to individuals 
who can best perform them. But future performance cannot be known prior to assignment, 
and must be inferred from other traits. We consider a model in which performance depends 
on two attributes—ability and training—where ability is endowed and unobserved and train-
ing is acquired and observed. The potential to acquire training depends on ability and resource 
access, so ability affects performance through two channels: indirectly through training and di-
rectly through the performance function. The population consists of two identity groups, each 
with the same ability distribution, but with differential access to resources. We characterize the 
sets of training levels that maximize expected performance. An allocation is monotonic if, for 
each group, there is a threshold value of training such that all those above this value (and none 
below) are selected. It is group-blind if assignment is independent of group identity, and psue-
domeritocratic if it is both monotonic and group-blind. We show that performance-maximizing 
allocations are not generally monotonic or group-blind, and are pseudomeritocratic under only 
very special conditions. This is true even when individuals can respond to non-monotonic 
policies by underinvesting in training, or when commitment to selection policies is possible.
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1 Introduction

Any practical implementation of a meritocratic ideal must be based on observables. In popular

discourse, merit-based allocations are inconsistent with selection based on markers of group iden-

tity, such as ethnicity, gender, or religion, since these are not intrinsically related to performance. It

is also believed that selection based on merit ought to satisfy a monotonicity property; those with

higher values of performance-related attributes, such as a test scores or course grades, should

have precedence over those with lower values. In this paper we challenge the general nature of

both of these claims.

We are interested in the problem of allocating a set of prized or elite positions to a fraction of

the population, and define a meritocratic assignment as one which assigns tasks to the individuals

who would best perform them. Since future performance cannot be known at the time of selection,

it has to be inferred from signals. As a consequence, attributes that are not intrinsically related to

merit may nevertheless be informative, and be valid criteria for selection under a meritocratic

policy. Furthermore, under quite general conditions, the inference made from a signal of merit

need not have the monotonicity property: lower values may sometimes signal greater merit—in

the sense of higher expected performance—than higher values.

We develop these arguments on the basis of a simple model with two groups. Within each

group, individuals differ along a dimension we call ability, under which we include all those char-

acteristics having the same distribution across groups. They also differ in their access to resources
such as good schools, neighborhoods or conducive family environments. There are two levels

of resource access, high and low, and one group is disadvantaged in the sense that that it has a

smaller proportion of people with high resource access. Neither ability nor resources are indepen-

dently observable, but they jointly determine an individual’s potential to acquire training, which

is observable, and which can therefore be used as a criterion for selection. Future performance

depends on both ability and training, so ability operates through two channels: it affects perfor-

mance directly, and also indirectly through its effect on training. A meritocratic allocation assigns

the available positions to those with the highest expected performance.

We say that an allocation of individuals to positions is monotonic if, for each group, there is

a threshold value of training such that all those above this value (and none below) are selected.

It is group-blind if the likelihood of selection for an individual is not contingent on their group

membership. And it is psuedomeritocratic if it is both monotonic and group-blind. Many college af-

firmative action programs have been challenged in court because they violate psuedomeritocracy

in applying lower admission thresholds to minority candidates. We show that such violations

may be consistent with allocations based on our notion of merit.

More precisely, we show that under quite general conditions, performance-maximizing alloca-

2



tions can fail to satisfy monotonicity. This happens when training is heavily resource dependent,

so that some levels of training are difficult to attain for high ability individuals with low resource

access. Since performance depends on both ability and training, maximization of expected perfor-

mance may require the selection of individuals with lower training (and higher inferred ability)

compared with some who have higher training.

Non-monotonic policies create incentives for some individuals to underinvest in training, so

that they may increase their prospects for selection. As a result, a given level of observed training

may involve the pooling of individuals with varying levels of potential training. However, given

differences in resource access across groups, such pools will have different levels of inferred ability,

and the performance-maximizing selection policy will not generally be group blind. In fact, the

disadvantaged group can be favored under the optimal policy to such an extent that its members

end up being overrepresented in elite positions. If commitment to a selection policy is possible,

underinvestment can be avoided, but selection will still not generally be group blind, and will

typically favor the disadvantaged group. This is the case even though neither diversity nor social

justice are explicit criteria for selection.

These arguments reveal that the usual framing of the problem of affirmative action—as a trade-

off between performance and representativeness—is misleading. Imposition of a pseudomeritoc-

racy constraint can lower performance, and requiring more equal representation can have lower

efficiency costs than requiring selection to be pseudomeritocratic.

There is a large literature on identity-contingent admission and hiring policies when there is

imperfect information on the performance-related characteristics of potential candidates. Early

work focused on statistical discrimination (Phelps, 1972; Arrow, 1973; Coate and Loury, 1993;

Aigner and Cain, 1977; Cornell and Welch, 1996). More recently, there has been a focus on optimal

selection rules when diversity and merit are both valued (Chan and Eyster, 2003; Fryer et al.,

2008; Fryer and Loury, 2013). These papers ask how traditional or “sighted” affirmative action

compares with color-blind affirmative action, which refers to policies that are not explicitly group-

contingent, but are nevertheless motivated by diversity goals. In this literature, individual merit

is treated as synonymous with some observable qualification such as a test score. As a result, a

purely meritocratic allocation simply involves the application of a common qualification threshold

to all members of the population, regardless of identity.1

The contributions of Durlauf (2008), Roemer (2009), and Scanlon (2018) are directly related

to the questions we ask here and use similar conceptions of merit. In evaluating the efficiency

implications of alternative assignment rules, Durlauf argues for a “move from merit as reward

to merit as effectiveness” on the grounds that true meritocracy should be understood as being

1For instance, Chan and Eyster (2003, p.860) assume that the “expected academic promise... of a candidate with test
score t is simply t: the higher a candidate’s score, the higher her quality.”
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based on future potential rather than past achievement. He points out that this “means that merit

needs to be assessed relative to the properties of human capital production functions.” Along

similar lines, Roemer argues that a proper conception of merit must be based on an individual’s

current attributes rather than on what has been achieved in the past, and Scanlon observes that

merit depends heavily on context and institutional goals. This notion of meritocracy as expected

performance-maximization is the one we adopt here.

Cestau et al. (2017) express the same idea in the context of the selection into a program for

gifted schoolchildren (emphasis added):

A student who has, in some way, experienced hardship may underperform on achieve-

ment tests relative to his or her capability. By taking account of such empirically

grounded differences across demographic groups, a district may be better able to de-

termine which students are most suited to admission to the gifted program... While

this profiling based on differences in distributions across racial groups is beneficial to

minority students, it is not preferential treatment.

Thus Cestau et al. (2017) distinguish between profiling, which is an attempt to use demographic

information to better meet performance goals unrelated to diversity, and affirmative action, which

involves preferential treatment for a group beyond levels justified by profiling. The former serves

the goal of maximized performance, while the latter increases diversity relative to performance-

maximizing levels. The authors consider selection decisions made by an (unnamed) school dis-

trict, and find that the district engages in both profiling and affirmative action with respect to

family income, and engages in profiling but not affirmative action with respect to race. One of

our main points is that bans on the use of group membership in the process of selection—such

as California’s Proposition 209 or Michigan’s Proposal 2—are bans on both affirmative action and

performance profiling. Contrary to the rhetoric surrounding such initiatives, such mandates there-

fore block the implementation of meritocratic allocations.

There are other reasonable conceptions of meritocracy based on the distinction between fac-

tors we cannot control and those we can. For instance, Loury (1981) distinguishes between “weak

meritocracy” (defined as a positive correlation between income and ability) and “strong meritoc-

racy” (which requires that the conditional distribution of ability rises with income in the sense of

first-order stochastic dominance). The long-run income distribution in his model satisfies weak

meritocracy but can fail to satisfy strong meritocracy. The reason for this failure has some simi-

larity to the mechanism at work in our analysis: there may be a range of income levels such that

those near the top of the range have high training but low ability on average, while those below

them have lower training but higher ability in expectation. But in Loury’s model incomes are

directly related to productivity, so the outcome is indeed meritocratic in the performance-related

sense used here.
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In the next section we present our model. In section 3, we consider a discrete version in which

future performance can be fully inferred from training provided that all individuals attain the

highest training levels consistent with their ability and resources. We identify conditions under

which selection policies fail to be monotonic, resulting in underinvestment and pooling in equi-

librium. Section 4 considers the case of continuous ability, which involves ability uncertainty even

in the absence of underinvestment. We end with some reflections on how our results contribute

to the discourse on efficiency, meritocracy and equal opportunity.

2 The Model

There is a continuum population composed of two groups, 1 and 2, with population shares s1 and

s2 respectively. Individuals within each group differ in their ability a, and access to resources r.

There is a common distribution of ability F(a), but the distribution of resources varies by group.

There are two resource levels, rl and rh where rl < rh. The proportion of individuals in group i
with access to the higher resource level is denoted by qi. We assume, without loss of generality,

that q1 ≤ q2 and refer to the first group as disadvantaged if the inequality is strict.

Ability and resources are independently distributed and neither can be directly observed. We

observe only group identity and a signal t, which we refer to as training. This could be thought

of as an observable measure of educational attainment or an indicator of it such as a test score.

The highest attainable level of training for individual is given by the continuous function τ(a, r),
which is increasing in both arguments. That is, at each level of ability and resources, the chosen

level of training satisfies

t ≤ τ(a, r).

We are interested in the problem of selecting a fraction k of the population into scarce positions,

and refer to k as elite capacity. Performance in these positions is increasing in both ability and

training as given by the function p = φ(a, t). We therefore allow ability to have both a direct and

an indirect effect on performance, capturing the idea that past scores might under-represent the

capacity of talented individuals to perform.

Any selection policy can be described by a pair of functions πi(t) that denote the probability of

being selected conditional on exhibiting training t and belonging to group i ∈ {1, 2}. If the policy

is deterministic, with each individual being accepted or rejected with certainty, it can equivalently

be described in terms of the group-contingent sets of training levels that result in selection.

Our goal is to characterize the selection policy that would assign the highest performers to the

available positions. We can think of this problem one faced by a social planner or a single firm or

university facing a fixed pool of applicants. Since the planner only observes training and group
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identity, he uses these to infer performance. The nature of these inferences depends on the form

of the training and performance functions, τ(a, r) and φ(a, t), as well as the strategic choices of

training levels by candidates in equilibrium.

We refer to a selection policy as monotonic if, for each group i, there is some threshold level of

training such that selection is ensured for those with training above the threshold, and rejection is

ensured for those below it. That is, under a monotonic selection policy, πi(t) > 0 implies πi(t′) = 1

for all t′ > t. A policy is group-blind if selection policies are independent of group membership:

π1(t) = π2(t) at all t.

If a policy is both monotonic and group-blind, we call it pseudomeritocratic. Such policies corre-

spond to common notions of meritocracy as reward. Under a monotonic policy, no individual can

increase her likelihood of selection by underinvesting in training. However, as we show below,

performance-maximizing policies need not be monotonic, which creates incentives for underin-

vestment.

We define a meritocratic assignment as one which maximizes expected performance and study

the nature of selection in such an assignment under three scenarios. In the first, individuals choose

the highest training that they can achieve, given their ability and resources, independently of the

selection policy. That is, we have t = τ(a, r) at all levels of ability and resource access. This would

occur, for instance, if there was high consumption value to reaching one’s potential. We refer to

this as the baseline case.

Next, we allow for individuals to underinvest in training. The selection policy and the training

distribution are now jointly determined in equilibrium, with individual investments in training

being chosen to maximize the likelihood of being selected. That is, given an anticipated selection

policy, individuals choose a training level that maximizes the probability of selection. If ti(a, r)
denotes the training level chosen by someone in group i who has ability a and resource access r,

we have

ti(a, r) ∈ arg max
t≤τ(a,r)

πi(t).

An equilibrium in this case is a selection policy and a set of training choices such that expected per-

formance is maximized given the training choices, and no individual can increase the likelihood

of selection by adopting a different, feasible level of training.

Finally, we allow for commitment to a selection policy before training investments are made.

This results in selection probabilities that are weakly increasing in training, so that there are no

incentives for underinvestment. Expected performance is higher with commitment than without,

but even with commitment polices will not generally be pseudomeritocratic.
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3 Meritocracy as Effectiveness

We begin with a discrete version of the model in which individuals in each group have either high

or low ability (al and ah) and consider first the baseline case without underinvestment. That is,

suppose that all individuals achieve their maximum training level, τ(a, r).

Since we have two resource levels, there are now four ability-resource combinations. The set

of maximum achievable training levels for these is denoted by T = {tll , thl , tlh, thh}, where tij for

ability i and resource j. We know that those with low ability and low resources have the lowest

level of both training and performance and those with high ability and high resources have the

highest of both. The remaining two cases cannot be unambiguously ranked in terms of either

training or performance.

If higher levels of training always signal higher ability, we say that the training function sat-

isfies inference monotonicity. That is, inference monotonicity holds if tlh < thl . Whether or not

inference monotonicity holds will depend on the relative importance of ability and resources in

determining training; if training is heavily resource dependent and resource differences are large,

inference monotonicity can fail.

We say that performance monotonicity holds if higher levels of training signal higher expected

performance. Clearly inference monotonicity is sufficient but not necessary for performance mono-

tonicity. If thl < tlh but φ(ah, thl) < φ(al , tlh), then inference monotonicity fails but performance

monotonicity nevertheless holds, and higher training levels will correspond to higher levels of

performance.

Whether or not we have performance monotonicity depends on the relative importance of

ability and training in determining performance; if training is sufficiently important we could

have performance monotonicity even if inference monotonicity fails.

If elite capacity is sufficiently small, all positions can be filled by individuals with the highest

training level. In this case there is no tension between meritocracy as reward and meritocracy as

effectiveness. For larger levels of elite capacity this is no longer the case.

Suppose that no individual underinvests in training, performance monotonicity fails to hold,

and elite capacity is greater than the share of the total population with the highest training level.

Then performance-maximization requires that the selection policy itself be non-monotonic, skip-

ping over the second highest training level to draw from the third. To illustrate, consider the

following example.

Example 1. Suppose that tlh > thl and φ(ah, thl) > φ(al , tlh), so performance monotonicity fails to hold.
Model parameters are s1 = s2 = 0.5, F(al) = 0.7, q1 = 0.1, q2 = 0.3, and k = 0.1. Then if all individuals
attain their highest feasible training level, the performance-maximizing selection policy will set πi(thh) = 1
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Figure 1: Optimal selection policies under three conditions.

and πi(tll) = πi(tlh) = 0 for both groups.

In this example, of the 10% percent selected to elite positions, 6% will have training thh, while

the remaining 4% will be drawn from those having training thl . This draw could (but need not)

be uniform at random without regard to group membership, in which case the policy is blind to

identity, but not monotonic in observable signals of performance.

This is illustrated in the left column of Figure 1, which shows the training frequency distri-

butions in the two groups; green bars indicate certain selection, red indicate certain rejection, and

yellow indicate selection with a probability that is positive but less than one. If those with training

level thl are selected uniformly across the two groups, the disadvantaged group will be underrep-

resented in elite positions.

A non-monotonic selection policy of this kind clearly creates incentives for underinvestment in

training. Unless the consumption benefits of attaining one’s potential are sufficiently great, those

with low ability and high resources will attempt to pool with those immediately below them, in

order to increase the likelihood of being selected.

This underinvestment, however, will change the quality of the pool of candidates with training

level thl , for two reasons: first, because individuals who were initially at training tlh had lower

performance than those with whom they are pooling, and second, because they are lowering their

performance even further by underinvesting in training relative to their potential.
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In order for complete pooling at thl to be consistent with equilibrium, it must be the case that

the expected performance of the pool be higher than that of the individuals who were initially at

training tlh. The exact conditions for this are identified below, but for the purposes of the example,

suppose that these conditions are satisfied in both groups. Then, under the conditions of Example

1, there is an equilibrium in which all individuals with low ability and high resources choose

training level thl rather than tlh, thus pooling with those at a training level below their potential.

Despite being diluted, this pool has higher expected performance (in both groups) than those

known to be of low ability and high resources. But since the pool in the disadvantaged group

has higher expected performance, and is large enough to fill the elite positions remaining after

those with the highest training level thh have been selected, we have π1(thl) > 0 = π2(thl) in

equilibrium.

This is illustrated in the middle column of Figure 1. Specifically, in this example, half of those

in the advantaged group pool at thl have high ability, while the corresponding figure for the disad-

vantaged group is more than three-quarters. Given the value of k, elite positions will be filled by

selecting all those at the highest training level (regardless of group), together with some of those

in the disadvantaged group pooled at thl .

Note that in this example the disadvantaged group will end up being overrepresented in elite

positions, occupying 55% of elite positions, despite having a worse distribution of training, and an

identical distribution of ability. And this effect arises even though the only criterion for selection

is the maximization of expected performance.

If commitment to a selection policy were possible, a higher level of performance could be at-

tained by simply applying the same probability of selection to those with training thl and tlh even

in the second case. This is shown in the right column of the Figure 1, for the same numerical ex-

ample. In this case the optimal selection policy does not induce underinvestment. Note, however,

that the composition of the selected pool will be the same as in the case without commitment, with

advantaged group members selected if and only if they attain the highest level of training.

The example shown in Figure 1 reveals a robust phenomenon. To identify conditions under

which this arises, define λi as follows:

λi =
(1− qi)(1− F(al))

(1− qi)(1− F(al)) + qiF(al)

This is the probability that an individual picked randomly from among those with training in the

set {thl , tlh} is of high ability.

Note that if q1 < q2, then we must have λ1 > λ2. Among the pool of individuals with the two

intermediate training levels, those in the disadvantaged group must have higher ability (though

not necessarily higher performance) in expectation.
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Next suppose that thl < tlh (so inference monotonicity fails to hold), and define µ ∈ (0, 1) by

the following condition:

µφ(ah, thl) + (1− µ)φ(al , thl) = φ(al , tlh).

Here µ is the proportion of high ability individuals in a pool with training thl that would result in

the same expected performance as a pool of low ability individuals with training tlh.

If λ2 > µ then, provided that performance monotonicity fails, there is an equilibrium in which

all individuals with low ability and high resources choose training level thl rather than tlh, thus

pooling with those at a training level below their potential. Despite being diluted, this pool has

higher expected performance (in both groups) than those known to be of low ability and high

resources. As long as the pool in the disadvantaged group has higher expected performance, and

is large enough to fill the elite positions remaining after those with the highest training level thh

have been selected, we have π1(thl) > 0 = π2(thl) in equilibrium.

As a step towards providing a more complete characterization of equilibrium policies, define

k1 as follows:

k1 = (1− F(al))(s1q1 + s2q2).

This is the proportion of the entire population having both high ability and high resources, and

hence the largest level of elite capacity that can be filled with those with the highest level of train-

ing. Define k2 as follows:

k2 = 1− F(al)(s1(1− q1) + s2(1− q2)).

This is the proportion of the total population with either high ability or high resources (or both).

It is clear that if if inference (and hence performance) monotonicity holds, then there exists

an equilibrium with a pseudomeritocratic selection policy at all values of elite capacity. If per-

formance monotonicity fails to hold, however, pseudomeritocratic selection policies can arise in

equilibrium only if elite capacity is sufficiently small or sufficiently large (see the appendix for all

proofs):

Proposition 1. If performance monotonicity fails to hold, there is an equilibrium with a pseudomeritocratic
selection policy if and only if k < k1 or k > k2.

This result rules out equilibria with pseudomeritocratic allocations for intermediate levels of

elite capacity. In this range, equilibrium selection policies have a more complicated structure, and

involve underinvestment:

Proposition 2. Suppose that performance monotonicity fails to hold, and k ∈ (k1, k2). Then
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a) If λ1 > µ, there is an equilibrium selection policy with πi(tll) = πi(tlh) = 0, πi(thh) = 1, and
π1(thl) > π2(thl). There is underinvestment by all individuals with low ability and high resource
access in the disadvantaged group, and at least some with low ability and high resource access in the
advantaged group.

b) If λ1 < µ, there is a group-blind equilibrium selection policy with πi(tll) = 0, πi(thh) = 1, and
πi(thl) = πi(tlh) < 1. There is underinvestment by some individuals with low ability and high
resource access in both groups.

In the first case, the probability of selection must be strictly greater for those in the disadvan-

taged group at some training levels. All low ability high resource types in the disadvantaged

group underinvest, pooling with those having high ability and low resource access. In the advan-

taged group such pooling may be partial if λ2 < µ, in which case low ability high resource types

distribute themselves across the two intermediate training levels in such a manner as to equalize

performance at µ.

In the second case, individuals in both groups distribute themselves across the two interme-

diate training levels in such a manner as to make expected performance equal to µ. This allows

the equilibrium selection policy to be blind to group identity, though it violates monotonicity by

applying the same probability (below one) to multiple training levels. As a result, there is under-

investment in equilibrium.

Proposition 2 implies that the equilibrium selection policy will favor the disadvantaged group

for some values of elite capacity, provided that λ1 > µ. As we have see in the middle column

of Figure 1, this effect can be strong enough to result in overrepresentation of the disadvantaged

group. Figure 2 shows how representation varies with elite capacity for the same numerical exam-

ple, under the assumption that λ1 > µ. We see here that overrepresentation of the disadvantaged

group arises for a wide range of elite capacities, and such overrepresentation can be substantial.

While the case of two ability levels reveals quite clearly that a performance-maximizing selec-

tion policy can be both group-contingent and non-monotonic, it has an important limitation: the

training level fully reveals ability in the absence of underinvestment. As a result, when all indi-

viduals choose their highest attainable training level, a group blind policy will be optimal. This

is no longer the case when ability is distributed continuously, however, since there will be ability

uncertainty even without underinvestment. We consider this next.
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Figure 2: Disadvantaged Group Representation as Elite Capacity Varies

4 Continuous Ability Distributions

Now suppose that the distribution of ability is continuous with density f (a) and support [0, 1].

We assume that f is continuous and strictly positive at all points in the support.2 As before, the

ability distributions are the same in the two groups.

Let t = τ(1, rh) denote the highest attainable level of training, and t∗ = τ(1, rl) the highest

level attainable by those with low resource access. Since τ is increasing in both ability and resource

access, t∗ < t. As a result, there is a range of training levels which reveal an individual to have

high resource access.3

As before, we first consider the baseline case without underinvestment in training, so t =

2The assumption that the density function is everywhere positive ensures that a likelihood function is well-behaved
at all relevant points, and simplifies our analysis.

3This assumption greatly simplifies the argument for the baseline case with no underinvestment, since ability is
also revealed when training is above t∗. The case t∗ = t gives rise to qualitatively similar results, as discussed in the
appendix.

12



τ(a, r). In this case the optimal selection policy will be generically deterministic, with each indi-

vidual selected with probability zero or one.4 To characterize the performance-maximizing selec-

tion policy, let T1 and T2 denote sets of group-contingent training levels, with the interpretation

that individuals in group i are selected if and only if they have a training level in Ti. We restrict

attention to selection sets that are chosen from the set T of finite unions of subintervals of [0, t].

Given any level of training t, let αl(t) and αh(t) denote the ability levels defined implicitly by

t = τ(αl , rl)

and

t = τ(αh, rh).

That is, αl(t) is the ability level needed to attain training t if one has low resource access, and αh(t)
is the corresponding ability level for those with high resource access. Clearly αl(t) > αh(t); any

given level of training requires more ability to attain if one’s resource access is low. Furthermore,

both αh and αl are strictly increasing in t, since a higher threshold at any given level of resource

access requires higher ability to meet.

Given any set of training levels T ∈ T , let Ah(T) and Al(T) denote the corresponding sets of

ability levels for high and low resource access individuals. That is, Ah(T) is the set of ability levels

that result in training within the set T, provided that one has high resource access, and Al(T) is

analogously defined. Specifically,

T = τ(Al , rl)

and

T = τ(Ah, rh).

Note that since T ∈ T and τ is continuous, Ah(T) and Al(T) will both be elements of A, the set of

finite unions of subintervals of [0, 1].

Firms cannot observe resource access, but they can observe group membership, and since

groups may have different levels of resource access, firms may choose T1 and T2 to be different.

Given any such choice, define mh(Ti) and ml(Ti) as the mass of individuals in group i having

ability levels in Ah(Ti) and Al(Ti) respectively:

mh(Ti) =
∫

Ah(Ti)
dF(a), ml(Ti) =

∫
Al(Ti)

dF(a)

Then expected performance is given by

E(p) =
2

∑
i=1

si

(
qi

mh(Ai)

∫
Ah(Ti)

φ(a, τ(a, rh))dF +
1− qi

ml(Ai)

∫
Al(Ti)

φ(a, τ(a, rl))dF
)

. (1)

4The reason why selection is not deterministic in Chan and Eyster (2003) despite an exogenously given score distri-
bution is that the selection is assumed to monotonic. Relaxing this assumption results in deterministic selection, as in
Ray and Sethi (2010). When we allow for under-investment in training, the performance-maximizing selection policy
will no longer be deterministic in general.
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The sets Ti are chosen to maximize this subject to the capacity constraint

2

∑
i=1

si (qimh(Ti) + (1− qi)ml(Ti)) = k, (2)

where k ∈ (0, 1) is the proportion of total jobs that are in the skilled sector.

We shall refer to a set of training levels (T1, T2) that satisfies the capacity constraint (2) as

an allocation. An allocation that maximizes expected productivity (1) is a performance-maximizing
allocation.

With continuous ability, an allocation is monotonic if

t ∈ Ti =⇒ t′ ∈ Ti

for each i and each t, t′ such that t′ > t. That is, a monotonic performance-maximizing allocation

has the property that each set Ti can be identified with a threshold training level ti such that an

individual in group i secures an elite position if and only if her training exceeds ti.

Group-blind allocations satisfy T1 = T2, and allocations that are both monotonic and group-

blind are pseudomeritocratic. In this case there is a common threshold t1 = t2 such that an in-

dividual secures an elite position if and only if her training exceeds this threshold, regardless of

group membership. At any such allocation, the only relevant characteristic for judging merit is the

value of the observable signal t, and not what this signal might imply, in conjunction with group

identity, about the expected productivity of an applicant.

An allocation is group egalitarian is it satisfies the following representation target:

qi

∫
Ah(Ti)

dF(a) + (1− qi)
∫

Al(Ti)
dF(a) = k, (3)

for each i. This ensures that the proportion of individuals who secure elite positions is the same

in both groups (and equal to the share of the total population in this sector). A group egalitarian

allocation need not be monotonic, and indeed we show below that a performance-maximizing

allocation can be group egalitarian and non-monotonic.

Much of our analysis is conducted under the assumption that t∗ < t, which follows from the

hypothesis that τ is increasing in r when a > 0. This, together with the assumption that f is every-

where positive, implies that expected productivity conditional on training is falls discontinuously

at t∗. Given this, non-monotonicity of the selection rule is ensured for one or both groups for cer-

tain values of elite capacity constraint. But this discontinuity is not essential to the argument, and

we show by means of an extended example in the appendix that non-monotonicity can arise even

if t∗ = t, in which case firms can never deduce resource access at any level of observed training.
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4.1 Performance-Maximizing Allocations

A performance-maximizing allocation need not be monotonic because productivity depends di-

rectly on ability, as well as indirectly through its effect on training. Since resource access is het-

erogeneous, it is possible that at some training levels the population is composed largely of high

ability and low resource individuals, while at higher training levels the opposite is true. Under

these conditions, expected productivity may be higher at lower training levels. We now identify

conditions under which this can occur.

Let γi(t) denote the likelihood that an individual in group i with training t has high resource

access. For t > t∗ we clearly have γi(t) = 1, since such training levels are unattainable for those

with low resource access. For t ≤ t∗ we have

γi(t) =
qi f (αh(t))a′h(t)

qi f (αh(t))a′h(t) + (1− qi) f (αl(t))a′l(t)

The expected productivity of someone in group i with training t is then

E(pi|t) = γi(t)φ(αh(t), t) + (1− γi(t))φ(αl(t), t).

For training levels above t∗, firms face no uncertainty about applicant resource access. In this case

expected productivity is simply

E(pi|t) = φ(αh(t), t).

Since both φ and αh are common to both groups and increasing in t, it follows that for t > t∗,
E(p1|t) = E(p2|t), and E(pi|t) is increasing in t.

Expected productivity is not increasing in t everywhere, however. Since γi(t∗) < 1 for each i,
there is uncertainty about the ability of an individual with training t∗ regardless of group identity.

As a result, individuals with maximal ability and low resource access are pooled with those hav-

ing moderate ability and high resource access. Since ability matters for productivity, expected pro-

ductivity at t∗ exceeds that at levels of training slightly above t∗. This implies that performance-

maximizing allocations must be non-monotonic for some levels of elite capacity, as we show be-

low.

Let Gi denote the distribution function for training in group i, and set

k̂ =
2

∑
i=1

si(1− Gi(t̂1)) > 0. (4)

We show below that if elite capacity lies below this threshold, then the performance-maximizing

allocation must be monotonic, and indeed pseudomeritocratic.

To identify conditions under which the performance-maximization allocation is not mono-

tonic, for each group i, let t̃i denote the highest level of training in the interval (0, t∗) that satisfies
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the following condition:

E(pi|t̃i) = φ(αh(t∗), t∗).

This exists because

E(pi|0) < φ(αh(t∗), t∗) < E(pi|t∗).

Now define k̃ as the elite capacity level that would exactly absorb the population with training

above these respective thresholds:

k̃ =
2

∑
i=1

si(1− Gi(t̃i)).

The following result describes how the performance-maximizing allocation varies with elite ca-

pacity in the baseline case.

Proposition 3. Suppose no individual chooses to underinvest in training. Then the performance-maximizing
allocation is pseudomeritocratic if k < k̂, and non-monotonic if k ∈ (k̂, k̃). Furthermore, there exists
k′ ∈ [k̃, 1) such that, if k > k′, then the performance-maximizing allocation is monotonic.

If elite capacity is sufficiently small, only those with high resource access can reach training

levels that allow them to be selected. And among these, only those with the highest ability are

selected. Since only elites are selected, and among these only those with highest ability, the same

standard is applied to both groups.5 If elite capacity is sufficiently large, we again obtain mono-

tonicity of performance-maximizing allocations under weak conditions. This is obviously true if

k = 1, and also true for k sufficiently large.

So if elite capacity is very small or very large, we obtain monotonicity. But non-monotonic

performance-maximizing allocations arise under very weak conditions when elite capacity lies in

a range that is neither too large not too small. The following example with two identical groups

illustrates.

Example 2. Suppose the two groups are of identical size and composition, rl = 1, rh = 2, t =
√

ar,
and p =

√
at. Then t∗ = 1 and t =

√
2. The performance-maximizing allocation is not monotonic

for k ∈ (0.11, 0.51). When k = 0.3, the set of training levels that result in selection (in either group) is
Ti = [0.91, t∗] ∪ [1.14, t].

Example 2, illustrated in Figure 3, shows that the performance-maximizing allocation may

fail to be meritocratic in an intuitive sense even when it is group egalitarian. Among those with

greater resource access, there are some with lower ability (and hence lower productivity) that get

elite positions while others with higher ability and productivity are denied. This is because the

former are pooled with high ability resource poor individuals, while the latter are not.

5Note, however, that if there are few elites in the disadvantaged group, then k̂ will be small, and hence the require-
ment for such allocations will be restrictive.
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Figure 3: A Nonmonotonic Performance-maximizing Allocation with Identical Groups.

Since the two groups are identical in this example, the performance-maximizing allocation is

group egalitarian. For groups that are not identical but very close in advantage, constraining firms

to select a group egalitarian outcome will not entail much productivity loss. In contrast, requir-

ing them to choose a pesudomeritocratic outcome can entail first order productivity losses if the

performance-maximizing allocation is nonmonotonic. That is, under certain conditions, imposing

group egalitarianism on firms will be less burdensome than imposing pseudomeritocracy.

4.2 Differential Treatment

We have seen that if elite capacity is small enough, the performance-maximizing allocation is

pseudomeritocratic, with a common selection threshold for both groups. A disadvantaged group

in this case will be underrepresented, so the outcome will not be group-egalitarian. Furthermore,

within each group those with lower resource access will be underrepresented.

For intermediate values of elite capacity the performance-maximizing allocation is not-monotonic

and therefore also not pseudometritocratic. But this raises the possibility that belonging to a dis-

advantaged group might make selection more likely at some levels of training. The reason is that

group membership is observable while ability is not, and belonging to a group with lower resource
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access on average signals higher ability at any given level of training.

This is most easily seen if a is uniformly distributed and t = ar. In this case

γi(t) =
qi

qi + (1− qi)c
, (5)

where c = rh/rl > 1 is a constant. This is clearly increasing in qi. As a result, at any level of

training at which there is uncertainty about resource access, members of a disadvantaged group

will be thought to have a higher level of ability. If q1 < q2, it immediately follows that at a

performance-maximizing allocation, any training level t contained in T2 will also be contained in

T1.6 This is true more generally.

Proposition 4. If q1 < q2, then T2 ⊆ T1, with T2 = T1 if and only if k ≤ k̂.

This means that a disadvantaged group will receive preferential treatment, not because of em-

ployers seeking to meet a representativeness target, but simply because the wish to maximize

profits. Forcing the adoption of a pseudomeritocratic policy, therefore, will result in lower pro-

ductivity. Of course the disadvantaged group could still be underrepresented on the whole.

4.3 A Special Case

The previous results regarding monotonicity and differential treatment can be illustrated by con-

sidering a spacial case in which E(pi|t) is increasing in t over the range [0, t∗]. A sufficient (but by

no means necessary) condition for this is that a is uniformly distributed and training is linear in

ability, since this implies that γi(t) is constant. The following example, which assumes linear train-

ing and productivity functions, has this property, and the corresponding perfromance functions

and training thresholds are shown in Figure 4.

Example 3. Suppose the two groups are of identical size, q1 = 1/5, q2 = 2/3, rl = 1, rh = 3/2, t = ar,
and p = βa + (1− β)t, and β = 4/5. Then (t̃1, t̃2, t∗, t̂2, t̂1) = (0.76, 0.87, 1.00, 1.16, 1.31).

When E(pi|t) is increasing in t over the range [0, t∗] for each i, we can obtain a sharp charac-

terization of the performance-maximizing allocation in relation to elite capacity. For k < k̂, we

know that the allocation is pseudomeritocratic. For k slightly above k̂, there exist t ∈ (t̃1, t∗) and

t′′ ∈ (t̂2, t̂1) such that all individuals in T1 = [t, t∗] ∪ [t′′, t] and T2 = [t′′, t] have expected produc-

tivity greater than all those outside this set, and the combined population of T1 and T2 is equal to k
(see Figure 4). In this case only the the disadvantaged group faces non-monotonic selection. Sim-

ilar reasoning implies that for even larger values of k, both groups face non-monotonic selection,

and eventually, for k large enough, monotonic (but not pseudomeritocratic) selection results.

6The same argument applies if t = aδr1−δ for some δ ∈ (0, 1). In this case (5) holds with c replaced by c(1−δ)/δ, so
γi(t) is again independent of t.
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Figure 4: Uniform ability and linear training and performance functions.

Hence the performance-maximizing allocation must lie in one of four regimes, depending on

elite capacity. If this sector is very small, then the allocation is pseudomeritocratic, only those

with high resource access are selected, and a common standard is applied to the two groups. The

disadvantaged group, having fewer individuals with high resource access, is underrepresented.

If elite capacity is somewhat larger, we have a regime in which those in the advantaged

group are selected based on a single threshold, while those in the disadvantaged group face non-

monotonic selection: some individuals below t∗ are chosen, while some above this are not. This is

because those with training slightly below t∗ have higher ability in expectation if they belong to

the disadvantaged group.

For even higher levels of elite capacity, both groups face nonmonotonic selection, but the stan-

dard applied to the disadvantaged group is less restrictive: some individuals with low levels of

training are selected only if they belong to the disadvantaged group.

Finally, if elite capacity is large enough, the performance-maximizing allocation is again mono-

tonic. But it is not pseudometritocratic: the threshold needed for selection from the disadvantaged

group is lower than that needed for selection from the advantaged group.

19



4.4 Representation

Given any performance-maximizing allocation (T1, T2) at elite capacity k, let ρi be defined accord-

ing to

ρi =
1
k

(
qi

∫
Ah(Ti)

dF(a) + (1− qi)
∫

Al(Ti)
dF(a)

)
.

This is a measure of the degree to which group i is underrepresented in elite positions. It is easily

verified that ρ1 = ρ2 = 1 if and only if the allocation is group egalitarian. The disadvantaged

group is underrepresented (and the advantaged group overrepresented) if ρ1 < 1 < ρ2.

It is clear that the disadvantaged group will be underrepresented at any pseudomeritocratic

allocation. To see this, consider any common threshold t applied to both groups, so T1 = T2 = [t, t].
Then

kρi = qi(F(1)− F(αh(t)) + (1− qi)(F(1)− F(αl(t)). (6)

Since αh(t) < αl(t), q1 < q2 implies ρ1 < ρ2. In particular, from Proposition ??, the disadvan-

taged group is underrepresented at any performance-maximizing allocation when elite capacity

is sufficiently small.

But this does not mean that the disadvantaged group will be underrepresented at all performance-

maximizing allocations. The following example shows that in a performance-maximizing alloca-

tion the disadvantaged group can be overrepresented, despite having systematically lower resource

access and hence lower levels of training on average.

Example 4. Suppose the two groups are of identical size, q1 = 1/5, q2 = 2/3, rl = 1, rh = 3/2, t = ar,
p = βa + (1− β)t, and β = 5/6. Then t∗ = 1 and t = 3/2. The performance-maximizing allocation at
k = 0.15 is T1 = [t, t∗] ∪ [t′′, t] and T2 = [t′′, t], where t = 0.8815 and t′′ = 1.1721. At this allocation
ρ1 = 1.03.

This example shows that the screening effect favoring a disadvantaged group can be strong

enough to overcome the disadvantage itself.

Intuitively, the screening effect will be strong when productivity depends a great deal on ability

relative to training. To explore this further, we consider a parametric specification for productivity

given by

p = φ(a, t) = βa + (1− β)t.

Here higher values of β correspond to a greater weight of ability relative to training. We know

that the performance-maximizing allocation is pseudomeritocratic when k < k̂, where k̂ is defined

in (4). Hence a higher value of t̂1 implies a lower value of k̂, so nonmonotonic allocations and

screening start to operate at lower levels of elite capacity. The following result shows how this

threshold value of elite capacity varies with β.
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Figure 5: Underrepresentation of Disadvantaged Group for Various k and β.

Proposition 5. The threshold level of elite capacity k̂ below which the performance-maximizing allocation
is pseudometritocratic is decreasing in β.

To illustrate, consider the special case of a linear training function t = τ(a, r) = ar and uni-

formly distributed ability. In this case the degree of underrepresentation is constant in the regime

with k < k̂. Specifically, using (6) and the fact that Al(Ti) is empty in this regime, we obtain

ρi =
qi(1− αh(t))

k
=

qi(1− αh(t))
(s1q1 + s2q2)(1− αh(t))

=
qi

s1q1 + s2q2
,

which is independent of t. If q1 < q2 then ρ1 < 1 < ρ2, and the degree to which the disadvantaged

group is underrepresented does not depend on k as long as this remains below k̂.

Once k exceeds k̂, screening starts to operate and the representation of the disadvantaged

group grows. Proposition 5 states that this threshold is rising in β, and this can be seen in Fig-

ure 5 for a specific family of examples.7

The figure also illustrates the four regimes identified above. The lowest curve corresponds to

the case where only training matters for productivity, in which case all performance-maximizing

7The figure is based on the same specifications as Example 4, but for additional values of β.
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allocations are pseudomeritocratic and the disadvantaged group os always underrepresented.

When ability also has an independent effect on productivity the disadvantaged group benefits

from the screening effect, to a degree that is increasing in β. For high enough values of this pa-

rameter, there exists a range of values of k that result in overrepresentation of the disadvantaged.

The figure also shows that representation can vary non-monotonically with elite capacity. In

particular, as the economy transitions from the second regime (in which only the disadvantaged

group faces non-monotonic selection) to the third (in which both groups do), the representation of

the disadvantaged group starts to fall when β is sufficiently high. Eventually, of course, equality

of representation is ensured as k approaches 1, since all individuals secure elite positions.

4.5 Underinvestment

Finally, consider the incentive effects of non-monotonic policies. As in the discrete case considered

in Section 3, when faced with such a policy, some individuals will have an incentive to attain

levels lower levels of training than are within their reach, given their abilities. This could allow

high resource individuals to signal that they have lower resource access, and hence higher ability,

than would otherwise be the case. As a result, no individuals could be excluded from selection if

anyone with lower training levels were selected.

Nevertheless, even in this case, the policy itself need not be monotonic. Indeed, for some

parameter values, an equilibrium selection policy cannot be monotonic:

Proposition 6. There exists an open set of parameter values such that the equilibrium selection policy is
not monotonic.

To see the reason for this, consider first the case of a single group. If elite capacity is such that

a monotonic policy requires the threshold to be t∗, then expected performance can be increased

by choosing a small interval of training levels above t∗ and setting the selection probability for

this set to zero. To respect the capacity constraint, a small interval below t∗ can then be selected

with positive probability. The newly rejected individuals will underinvest to pool with the newly

accepted, but since the latter have strictly higher expected performance, overall performance will

rise. This reasoning applies for all levels of elite capacity and all values of the population compo-

sition sufficiently close to these extreme cases.

If the equilibrium selection policy is not monotonic, then there must be some level of under-

investment: some set of individuals below t∗ are admitted with positive probability while some

above t∗ are rejected, so the latter pool with the former. This pool now contains three types of

individual: high and low resource types who don’t underinvest, and high resource types who do.

As in the discrete case, if commitment to a selection policy is possible, then the same allocation
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of seats to candidates can be attained by choosing a monotonic policy that replicates the equilib-

rium. The reasoning is similar to that underlying the revelation principle: one simply assigns to

each training level the probability of selection that the individuals in question would have attained

in the equilibrium with underinvestment. This avoids the efficiency losses associated with under-

investment. But again, as in the discrete case, the pool quality is greater in the disadvantaged

group (which has fewer high resource individuals to begin with), and the equilibrium policy will

accordingly not be group-blind in general.

5 Conclusions

Meritocratic allocations are commonly understood to be those in which individuals best able to

perform a given task are assigned to it. In a world in which these capacities cannot be directly

observed and only imperfectly inferred through noisy signals such as test scores or years of com-

pleted education, we show that the nature of meritocratic allocations can be counter-intuitive and

complex.

For instance, selection criteria need not be monotonic in signals of merit even within groups,

disadvantaged groups may be favored in the selection process for reasons of productivity rather

than representativeness, this screening effect can be strong enough to overwhelm the resource dis-

advantage itself in extreme cases, imposing pseudomeritocarcy can result in greater productivity

losses than imposing group egalitarianism, and all these effects depend critically on the level of

elite capacity. Through this exploration of the complex relationship between observed and ac-

tual merit, we see a central contribution of our paper as clarifying the concept of meritocracy and

questioning policies based on its common interpretations.
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Appendix

Proofs: Discrete Case

Proof of Proposition 1. Suppose k < k1, the selection policy is pseudomeritocratic, and all individ-

uals invest in their highest feasible training level. Since only those with training thh are selected,

no other selection policy can result in higher expected performance. Since only (ah, rh) types can

attain this training level, no individual has a profitable deviation.

Now suppose k > k2, the selection policy is pseudomeritocratic, and all individuals invest in

their highest feasible training level. Since only those with training tll are selected with probability

below 1, no other selection policy can result in higher expected performance. Since only (al , rl)

types are excluded with positive probability, and they cannot invest at any level higher than tll ,

no individual has a profitable deviation.

If k ∈ (k1, k2), a pseudomeritocratic policy must involve either

0 = π1(thl) = π2(thl) < π1(tlh) = π2(tlh),

or

0 < π1(thl) = π2(thl) < π1(tlh) = π2(tlh) = 1.

In either case, there is no incentive for underinvestment. Given the failure of performance mono-

tonicity, performance can be increased by lowering the selection probability at tlh and raising it at

thl . Hence a pseudomeritocratic policy cannot arise in equilibrium.

Proof of Proposition 2. Suppose k ∈ (k1, k2) and λ1 > µ. We first consider the case λ2 > µ. Suppose

that types (al , rh) in both groups underinvest and choose thl while all other types invest at the

highest feasible level. Then a selection policy with πi(tll) = πi(tlh) = 0 and πi(thh) = 1 is a

best response if either π1(thl) = 1 > π2(thl), or π1(thl) > 0 = π2(thl). To see this, note that if

π1(thl) < 1 and π2(thl) > 0 then expected performance can be raised by shifting probability from

π2(thl) to π1(thl). Under the proposed selection policy, no individual can profitably deviate by

changing her investment choice.

If k ∈ (k1, k2) and λ1 > µ > λ2, there is an equilibrium in which all types (al , rh) in the

disadvantaged group underinvest and choose thl while those of type (al , rh) in the advantaged

group distribute themselves across the training levels thl and tlh in such a manner as to make the

expected performance equal to µ at both training levels. Then a selection policy with πi(tll) =

πi(tlh) = 0 and πi(thh) = 1 is a best response if either π1(thl) = 1 > π2(thl) = π2(tlh), or π1(thl) >

0 = π2(thl) = π2(tlh). To see this, note that if π1(thl) < 1 and either π2(thl) or π2(tlh) > 0 then

expected performance can be raised by shifting probability from to π1(thl) from either π2(thl) or
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π2(tlh). Under the proposed selection policy, no individual can profitably deviate by changing her

investment choice.

Finally, suppose that k ∈ (k1, k2) and µ > λ1. Then there is an equilibrium in which all

types (al , rh) in both groups distribute themselves across the training levels thl and tlh in such

a manner as to make the expected performance equal to µ at both training levels. Then a selection

policy with πi(tll) = πi(tlh) = 0 and πi(thh) = 1 is a best response if πi(thl) = πi(tlh). Under

the proposed selection policy, no individual can profitably deviate by changing her investment

choice.

Proofs: Continuous Case

The following three preliminary results are useful for the proofs to follow.

Lemma 1. For t > t∗, E(p1|t) = E(p2|t), and E(pi|t) is increasing in t.

Proof. For t > t∗, γi(t) = 1 for each i, and hence E(pi|t) = φ(ah(t), t). Since both φ and ah are

common to both groups and increasing in t, the claim follows.

Lemma 2. For each i, there exists a unique t̂i ∈ (t∗, t) such that

E(pi|t̂i) = maxt≤t∗ E(pi|t).

If q1 < q2 then t̂2 < t̂1.

Proof. Since φ(a, t) is increasing in both arguments and t∗ < t,

maxt≤t∗ E(pi|t) < φ(1, t) = E(pi|t).

Since αl(t∗) = 1 > αh(t∗), we have

E(pi|t∗) = γi(t∗)φ(αh(t∗), t∗) + (1− γi(t∗))φ(1, t∗) > φ(αh(t∗), t∗).

For ε sufficiently small, f (1) > 0, imples γi(t∗) < 1 and hence

E(pi|t∗ + ε) = φ(αh(t∗ + ε), t∗ + ε) < E(pi|t∗) ≤ maxt≤t∗ E(pi|t).

Recall that for t > t∗, E(p1|t) = E(p2|t), and E(pi|t) is increasing in t. Hence there exists a unique

t̂i ∈ (t∗, t) such that E(pi|t̂i) = maxt≤t∗ E(pi|t). The claim that t̂2 < t̂1 when q1 < q2 follows from

Lemma 3.

Lemma 3. If q1 < q2, then t̃1 < t̃2 < t∗ < t̂2 < t̂1.
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Proof. By definition

maxt≤t∗ E(pi|t) = φ(αh(t̂i), t̂i)

Since E(p1|t) > E(p2|t) for all t ≤ t∗ and both αh(t) and φ are increasing, we have t∗ < t̂2 < t̂1.

Similarly, by definition, t̂i is the largest value of t ≤ t∗ such that

E(pi|t) = φ(αh(t∗), t∗).

Since E(p1|t) > E(p2|t) for all t ≤ t∗, we have

E(p1|t̂2) > E(p2|t̂2) = φ(αh(t∗), t∗)

which implies E(p1|t) > φ(αh(t∗), t∗) for all t ∈ [t̂2, t∗]. Hence t̃1 < t̃2 < t∗.

Proof of Proposition 3. If k < k̂ then there exists t′ > t̂ such that

k =
2

∑
i=1

si(1− Gi(t′)).

From Lemmas 1-2, for any t′′ > t′ > t̂,

E(p1|t′′) = E(p2|t′′) > maxt<t′ E(pi|t)

for each i. Hence the unique performance-maximizing allocation is given by T1 = T2 = [t′, 1],

which is pseudomeritocratic.

Next consider the case k ∈ (k̂, k̃). Suppose, by way of contradiction, that the performance-

maximizing allocation is monotonic with thresholds t1 and t2. At least one of these thresholds

must satisfy ti < t̂ = max{t̂1, t̂2}, otherwise we would have k ≤ k̂. We separately consider two

cases: ti < t̂i, and ti < t̂j where j 6= i.

First consider the case ti < t̂i. This implies ti < t∗, since

E(pi|t∗) > E(pi|t)

for all t ∈ (t∗, t̂i). But this in turn implies ti ≤ t̃i. If this were not the case, there would exist some

t /∈ Ti with

E(pi|t) > φ(αh(t∗), t∗),

and hence

E(pi|t) > E(pi|t∗ + ε)

for ε sufficiently small. Since t∗ + ε ∈ Ti and t /∈ Ti, this is inconsistent with Ti being part of a

performance-maximizing allocation.
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Hence we have shown that ti ≤ t̃i. But this implies that tj > t̃j, otherwise k < k̃ would be

impossible. Now tj > t̃j implies that there exists t /∈ Tj such that

E(pj|t) > φ(αh(t∗), t∗).

Hence expected productivity can be increased by replacing some individuals in Ti with training in

(t∗, t∗ + ε) with an equal measure of those in group j with training in (t̃j, t̃j + ε), for ε sufficiently

small. This contradicts the hypothesis that (T1, T2) is a performance-maximizing allocation.

To complete the proof, consider the case ti < t̂j where j 6= i. In this case there exists t ∈ Ti such

that

E(pi|t) < E(pi|t̂j) = E(pj|t̂j) = E(pj|t∗).

This implies t∗ ∈ Tj, and hence tj ≤ t̃j (following the same reasoning as above). As a result, ti > t̃i,

otherwise k < k̃ would be impossible. Hence there exists t /∈ Ti such that

E(pi|t) > φ(αh(t∗), t∗).

Hence expected productivity can be increased by replacing some individuals in Tj with training

in (t∗, t∗+ ε) with an equal measure of those in group i with training in (t̃i, t̃i + ε), for ε sufficiently

small. This contradicts the hypothesis that (T1, T2) is a performance-maximizing allocation.

To prove the last claim, note that since φ is increasing in both arguments, the following holds

for each t > 0 and each i:
E(pi|0) < E(pi|t).

That is, expected productivity is minimized at the lowest attainable level of training, since this

also involves the lowest level of ability. Hence there exists t′ > 0 such that, for all t′′ ≤ t′ and

t > t′, and each group i,
E(pi|t′′) < E(pi|t).

In this case, regardless of group membership, if an individual with training t′ secures an elite

position, so must all individuals with t > t′. And if an individual with training t′ fails to secure

an elite position, those with t < t′ must also fail to do so. For any given t′, if k is sufficiently large,

then at least some individuals with t < t′ in each group must be assigned to elite positions. Hence

the allocation is monotonic.

Proof of Proposition 4. Let H(q, t) be defined as

H(q, t) =
q f (αh(t))a′h(t)

q f (αh(t))a′h(t) + (1− q) f (αl(t))α′l(t)
,

and note that
∂H(q, t)

∂q
=

f (αh(t)) f (αl(t))a′h(t)a′l(t)
(q f (αh(t))a′h(t) + (1− q) f (αl(t))α′l(t))

2 > 0.

27



Since γi(t) = H(qi, t), q1 < q2 implies γ1(t) < γ2(t) for t ∈ [τ(0, rh), t∗]. Recall that expected

productivity conditional on training is

E(pi|t) = γi(t)φ(αh(t), t) + (1− γi(t))φ(αl(t), t).

Since αh(t) < αl(t), we obtain

q1 < q2 =⇒ E(p1|t) > E(p2|t)

at any t ∈ [τ(0, rh), t∗].

If k > k̂, then there must be at least some t ∈ [0, t∗) that is contained in T1. If there is no such

t in T2 then clearly T1 6= T2 as claimed. Suppose, instead, that there exists some t ∈ [0, t∗) that

is contained in T2. Since E(p1|t) > E(p2|t), this must also be contained in t1. Furthermore, since

k < 1, there must be some such t ∈ T2 such that no neighborhood of t is contained in T2. However

since E(p1|t) > E(p2|t), the set (t− ε, t + ε) must be contained in T1 for ε sufficiently small. Hence

T1 6= T2 as claimed.

Proof of Proposition 5. Fix any group i, set γ = γi(t∗), and define H(β, t) as follows

H(β, t) = γφ(αh(t∗), t∗) + (1− γ)φ(αl(t∗), t∗)− φ(αh(t), t)

= γ(βαh(t∗) + (1− β)t∗) + (1− γ)(βαl(t∗) + (1− β)t∗)− (βαh(t) + (1− β)t)

= β(γαh(t∗) + (1− γ)αl(t∗)) + (1− β)t∗ − (βαh(t) + (1− β)t).

Note that t̂i is a solution for t to H(β, t) = 0 and that ∂H/∂t is everywhere nonzero. This implicitly

defines a function t̂i(β). Using the Implicit Function Theorem, we obtain

dt̂i

dβ
= −∂H/∂β

∂H/∂t
=

γαh(t∗) + (1− γ)αl(t∗)− αh(t̂i) + t̂i − t∗

βa′h(t̂i) + (1− β)

Since t̂i > t∗, the above expression is also positive provided that

γαh(t∗) + (1− γ)αl(t∗) > αh(t̂i). (7)

To see that this must be the case, note that by definition,

γ(βαh(t∗) + (1− β)t∗) + (1− γ)(βαl(t∗) + (1− β)t∗) = βαh(t̂i) + (1− β)t̂i.

Hence

β(γαh(t∗) + (1− γ)αl(t∗)− αh(t̂i)) = (1− β)(t̂i − t∗) > 0,

which implies (7). Hence t̂i is increasing in β. The claim then follows from the definition of k̂.
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Proof of Proposition 6. Define k∗ ∈ (0, 1) as follows:

k∗ =
2

∑
i=1

si(1− Gi(t∗)).

Suppose first that k = k∗ and s2 = 0 (so there is just one group). If the equilibrium selection policy

is monotonic, then t1 = t∗. Consider the following perturbation of the selection policy: select

those group 1 individuals in [t∗ + ε, t] with probability 1, and those in [t∗ − ε, t∗] with probability

r < 1. The pair (ε, r) is chosen to ensure that the capacity constraint continues to be satisfied,

conditional on all group 1 individuals in (t∗, t∗ + ε) choosing training levels in [t∗ − ε, t∗], and no

other underinvestment. This will be possible if ε is sufficiently small. Also, for ε sufficiently small,

the perturbed policy increases expected performance, since it replaces some individuals slightly

above t∗ with some who are slightly below t∗. The performance of those newly accepted is strictly

greater than those newly rejected, so the perturbed policy is performance increasing. Clearly a

monotonic selection policy will fail to be optimal for k sufficiently close to k∗.

Now suppose that s2 > 0 and k = k∗. Under any monotonic policy, we must have t1 = t∗ + η,

where η ≥ 0. By choosing s2 sufficiently small, η can be made arbitrarily close to zero. The above

reasoning then applies: performance can be increased by cutting the probability of selection for a

small interval above t1 to zero, and admitting a small interval below t∗ with probability chosen to

respect the capacity constraint (holding constant the selection policy for group 2).

This shows that a non-monotonic policy exists that is strictly superior to the pseudomerito-

cratic policy at elite capacity k∗. The claim then follows from the continuity of expected perfor-

mance in elite capacity.

Robustness

The previous arguments have been made under the assumption that there are some levels of train-

ing that are unattainable for those with low resource access. This seems reasonable, and consider-

ably simplifies the argument, but is not necessary for the identified effects to arise.

To see this, consider the following example. Let gh(t) = f (αh(t))a′h(t) and gl(t) = f (αl(t))a′l(t)
denote the density functions for training conditional on high and low resource access, and suppose

that these are given by beta distributions with shape parameters (2, 5) and (5, 2) respectively. The

underlying distribution of ability f (a), the two levels of resource access rl and rh, and the mapping

τ(a, t) from ability and resources to training are all implicit here, and not uniquely pinned down.

Suppose that p = aωt1−ω and that ω = 0.8.

The mean levels of training in this case are 2/7 for those with low resource access and 5/7

for those with high resource access, and the corresponding modes are at 0.2 and 0.8. As long as
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Figure 6: Likelihood of High Resource Access and Expected Productivity by Group.

qi is not too extreme, at low levels of training an individual is very likely to have low resource

access. Likewise, at high training levels, one is very likely to be dealing with an individual having

high resource access. Nevertheless, all levels of training are reachable at both resource levels so

uncertainty is never resolved.

Now suppose that the groups have composition q1 = 0.3 and q2 = 0.7 respectively. In this case

expected productivity conditional on training will differ by group. At any given training level,

an individual’s expected level of ability will be higher if she belongs to the disadvantaged group,

and this effect is especially strong at intermediate levels of training.

Figure 6 shows how γi(t) and E(pi|t) vary with t in this example. The likelihood that one is

dealing with someone having high resource access is increasing in t for both groups, but at differ-

ent rates. At intermediate values of training, someone in a disadvantaged group is considerably

more likely to have low resource access, and hence much more likely to have higher productivity.

This productivity gap may be seen in the bottom panel of the figure.

The figure also shows that expected productivity does not vary monotonically with train-

ing in either group. The performance-maximizing allocation will be monotonic if elite capacity
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is sufficiently high or low, but at intermediate levels of capacity one or both groups will face

non-monotonic selection criteria. Furthermore, equalization of accepted productivity among the

marginal accepted types implies that T2 will be a proper subset of T1 at all values of k, which is

even stronger than the claim in Proposition 4. Hence none of our main qualitative claims depend

on the existence of discontinuities in expected productivity conditional on training, which arise

when some training levels are out of reach for those with low resource access.
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